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ABSTRACT: When the dominant rate-mechanisms within a mixed-suspension mixed-
product removal (MSMPR) crystallizer are secondary nucleation and size-independent
linear crystal growth, the effluent crystal distribution is guaranteed to exhibit a single
polymorphic solid form at steady state. However, multiple solid forms are often
simultaneously observed during the continuous precipitation of CaCO3. Accounting for
agglomeration within the population balance reconciles model predictions with
experiments. Here, we elucidate the steady state structure and linear stability features
of an agglomeration-enabled continuous precipitator model. We demonstrate that one
can make rational process design and operation decisions to select the effluent solid
form, regardless of its thermodynamic stability. Specifically, we utilize these results to
choose process conditions that yield pure, thermodynamically metastable vaterite during
CaCO3 precipitation, based on powder X-ray diffraction, solid-state 43Ca NMR, and
scanning electron microscopy. This new design framework enables predictive modeling
of CaCO3 precipitation, but more generally, it is expected to enable rational decision making during the design and operation of
other agglomerative precipitation processes for which solid form selection is desired.

■ INTRODUCTION

Polymorphism has been prominent in the study of material
science and industrial crystallization for over 180 years,1,2 and
the primary mechanism of polymorphic interconversion,
known as solvent-mediated phase transformation, has been
postulated, modeled, and experimentally validated over the
past 35 years.3−5 Polymorph selection and control has
maintained attention over such long periods of time due to
the technological implications of polymorphic variation of a
compound’s mechanical, electrical, optical, chemical, solubility,
bioavailabillity, and bioactivity properties.6−9 Controlling
polymorphism in industrial processes has remained difficult
and at times elusive, as demonstrated by the extensive
literature on concentration control, temperature control,
additive selection, templating materials, solvent choice, and
combinatoric screening.10−18 Recently, the ability to produce
single polymorph crystal distributions using continuous
crystallization has been demonstrated for L-glutamic acid and
p-aminobenzoic acid systems.19,20 At steady state, a MSMPR
crystallizer operates at a single solute concentration and
supersaturation. Thus, each solid form is either supersatured or
undersaturated. If a form is undersaturated, it will eventually
wash out of the crystallizer and be absent at steady state.
Therefore, the solvent mediated phase transformation cannot
occur at steady state in a continuous MSMPR crystallizer.
These observations motivated the development of general
design rules for producing pure distributions of any preferred
polymorph in a continuous crystallizer dominated by size-
independent linear crystal growth and secondary nucleation,
regardless of the thermodynamic stability of the desired solid
form.21 This is an unrestrictive set of assumptions that covers

many organic crystal systems, including the vast majority of
pharmacologically active small molecules.22,23

Still, there are other crystal/crystallizer systems of industrial
relevance for which other rate-processes could become
important. For example, a process could exhibit (1) primary
nucleation, (2) metastable-form nucleation from the surface of
a relatively stable form, (3) alternative growth or nucleation
rate expressions, (4) agglomeration, (5) breakage, (6)
chemical reaction in solution, or (7) a number of possible
process permutations (e.g., putting two devices in series,
recycling solids, etc.). The first three of these were discussed
and classified as qualitatively unimportant for purposes of solid
form selection during well-mixed, continuous crystallizations in
our previous publication.21 The last four have not yet been
considered and are expected to become important in some
crystal systems.
One system of special interest is the reactive precipitation of

CaCO3 from Na2CO3 and CaCl2. This system exhibits
chemical reaction in solution, significant agglomeration, and
five unique solid forms near standard temperature and pressure
(STP): 3 crystalline polymorphs, a crystalline hydrate, and an
amorphous form.24 Furthermore, it is technologically interest-
ing because of efforts to make cementitious materials from flue
gases for carbon capture. For this type of process to work, the
solids produced must exhibit suitable material properties for
structural materials applications. The patent literature suggests
that the thermodynamically stable form of CaCO3 (calcite) is
unlikley to make a suitable construction material, while vaterite
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(highest energy crystalline form) and amorphous calcium
carbonate (ACC, highest energy amorphous form) seem to
work quite well.25,26 Therefore, we are presented with the
specific challenge of directing solid form during CaCO3
precipitation as a step toward developing carbon capture and
utilization processes.
Still, there are many other systems for which solid form

selection is a pivotal engineering objective, so here, we address
the general challenge of polymorph selection during
agglomerative precipitations. Agglomeration events decrease
total crystal number density and reduce total crystal surface
area. Crystals grow from the surface, so less crystal surface area
implies a lower total (distribution integrated) growth rate.
Therefore, agglomeration changes the relative magnitudes of
growth, nucleation, and product removal rates within a
crystallizer. Altering the relative rates has a significant effect
on the dynamic stability of the various steady states and
therefore on the design rules for solid form selection.
We have characterized the impact of agglomeration on the

steady state multiplicity and relative steady state dynamic
stability by generating and analyzing a bipolymorph agglom-
eration-enabled precipitator model. We have demonstrated
that adding agglomeration to the model enables the mixed-
polymorph steady states that are often observed during the
continuous precipitation of CaCO3, but were unpredictable
with a nonagglomerating, continuous crystallizer model.21 The
insights gained from analyzing the agglomeration-enabled
model can be used to direct polymorphism in agglomerative
systems such as the technologically, geologically, and bio-
logically important CaCO3 system.
Experimental measurements confirmed the model predic-

tions, yielding pure metastable polymorphs under steady state
process conditions. Polymorph selection can be achieved
through manipulation of the dynamic stability of competing
steady states in a continuous device through this type of
process design. Under such circumstances, the resulting
process is inherently simple to control, and process
disturbances tend to decay with time. Furthermore, the
thermodynamically metastable vaterite crystals generated in
this way do not transform to the more stable calcite polymorph
over the time scales we have thus far measured and observed
(>12 months).

■ THEORY: MODEL EQUATIONS

The semantic distinction between precipitation and crystal-
lization has different meanings to different investigators.27,28

Here, we use the term precipitation to encompass the class of
crystallization processes characterized by very high solute
supersaturations. These supersaturations are typically gener-
ated by chemical reaction of two soluble reactants to form a
sparingly soluble product. In these processes, desupersatura-
tion is typically dominated by nucleation, and large crystals
form primarily from the agglomeration of many smaller
crystals. Crystallization is characterized by lower super-
saturations, in which the desupersaturation is dominated by
crystal growth. In crystallization, agglomeration tends to have
less of an impact on the final distribution of crystal sizes. Often,
all three mechanisms need to be taken into account (e.g.,
CaCO3 precipitation at high supersaturation and paracetamol
crystallization at lower supersaturations29), and naming the
method of crystal formation becomes more a matter of
preference and tradition. Some precipitative systems can be

described as if the crystal growth rates are exactly zero,30 but
this is not a reasonable approximation for crystallizations.
A multipolymorph continuous precipitation process can be

modeled as the system of partial differential integral equations
shown in eqs 1−6. These equations are generated by applying
a population balance and a solute/mass balance to a
multipolymorph, continuous, mixed-suspension, mixed-prod-
uct-removal (MSMPR) crystallizer. A population balance
model is a mathematical expression of conservation of a
distributed quantity under the influence of some rate
mechanisms described by constitutive rate laws. Therefore, a
population balance describes how a distribution changes as a
function of time. In this case, that distibution is the crystal size
distribution, ni(t, x), where ni(t, x) denotes the crystal number
density of form i as a function of t (time) and x (crystal length,
if spherical then x is crystal radius or diameter). This
distribution has units of number per volume per length, such

that the integral ∫ n t x x( , ) d
x

x
i

a

b gives the crystal number

density of solid form i between the lengths xa and xb as a
function of t. For an agglomeration-enabled continuous
precipitator, the relevant rate processes that require a
constitutive rate law are secondary nucleation (Bi), size-
independent linear crystal growth (Gi), and crystal agglomer-
ation. The rate expressions we have chosen for nucleation and
growth are given in eq 2. These expressions simplify to eq 6
when the feed is stoichiometric (see the SI for discussion of the
nonstoichiometric feed case). We discussed these rate
expression choices in detail in our previous paper and
demonstrated that the analysis and results are qualitatively
similar for different sets of rate expressions.21 In fact, the only
significant change in the governing system of equations from
our previous paper is the notable addition of the two integral
terms that describe crystal agglomeration. The first integral
term quantifies the combined crystal number density available
to form a crystal of length x, as a function of x. The second
integral term quantifies the combined crystal number density
available for removal from the distribution due to agglomer-
ation events involving a crystal of size x, as a function of x. In
both cases, the combined crystal number density is converted
to an agglomeration rate through an agglomeration kernel βi
(agglomeration frequency rate coefficient). In general, βi can
be a function of size (x) and supersaturation (S, the ratio of the
solute concentration in the device to its saturation concen-
tration), but it will be considered a constant throughout this
article. A size and supersaturation independent kernel and the
integral expressions in eq 1 combine to give the simplest
possible description of agglomeration that conserves volume/
mass when the crystal size coordinate has units of length.31,32

The agglomeration kernel used here also implies that
agglomeration events can only occur among particles in the
same distribution (of the same solid form). Additional
discussion and justification of the selected agglomeration
kernel is included in the SI. The initial and boundary
conditions are standard and discussed elsewhere.31,33 The
resulting partial differential integral equation that governs the
distribution dynamics of form i is shown in eqs 1−3.

∫

∫
τ

β λ λ
λ

λ

β λ λ

∂
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= − +
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α β= = = = =i n t x n n t x
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G

, ( 0, ) ( , 0)i i i
i

i
,seed

(3)

where ni,seed is a distribution of seed crystals introduced as a
pulse at t = 0, Keq,i is the equilibrium solubility constant for
form i, C1 and C2 are the molar concentrations of Ca2+ and
CO3

2− ions in solution, respectively, and τ is the MSMPR
residence time. The 1/2 power that appears in the growth and
nucleation driving forces was justified in a previous
publication.34 In general, there are p polymorphs, denoted by
the subscript i. Here, the two-solid-form case is explicitly
considered and analyzed, with the thermodynamically stable
form at STP (calcite) labeled i = β and the thermodynamically
metastable form (vaterite) labeled i = α (consistent with our
previous work).21

Another modification to the previous model arises due to
the reaction chemistry inherent in this type of reactive
precipitation process. The chemistry adds additional mole
balance ODEs and additional model parameters and design
choices related to the reaction rates and the feed stoichiometry.
When the feed is stoichiometric and the pH is relatively high,
the mole balance ODEs and the growth and nucleation rate
expressions simplify to eqs 4 and 6, as discussed in detail in the
Supporting Information. These conditions will be met for the
experiments discussed throughout this article.
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where ρi is the molar density of solid form i and ki,v is a shape
factor. A derivation of these equations and a discussion of the
implication of a nonstoichiometric feed are both available in
the Supporting Information. It is also worth noting that all of
the concentrations, equilibrium constants, and densities have
been defined on a molar basis here. A mass basis was used in
the previous, nonagglomerating model, but a mole basis is
more convenient when chemical reactions occur.
Fixed Point Quadrature Method of Moments (F-

QMOM). The method of moments is an integral trans-
formation that allows one to monitor and analyze the moments
of a distribution, instead of considering the entire distribution.
This transformation finds utility in applications for which a
more detailed knowledge of a distribution’s dynamics is

unnecessary. Here, we are concerned with determining process
conditions for which a crystal size distribution under the
influence of nucleation, growth, agglomeration, and convective
flow exhibits one solid form or another. This problem is an
ideal candidate for the method of moments because the
relative fraction of each form can be determined from the
moments of each distribution alone. Typically, application of
the method of moments is restricted to cases in which the
moment ODEs close. Closure occurs when the dynamics of
some set of moments can be described in terms of only model
parameters and moments of order k ≤ N (where k is the
subscript denoting the moment order, and N is the total
number of moments necessary for closure). Closure is not met
when the moment transformation fails to remove all of the
ni(t,x) terms or when lower-order moments always depend on
higher-order moments, necessitating a solution of the full PDE
or of the entire infinite set of moment equations, respectively.
Applying the method of moments and a change of variables (u3

= x3 − λ3)35 to the agglomeration (integral) terms in eq 1
results in eq 7 for the kth moment of the i distribution
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where mi,k is the kth moment of the i distribution (the method
of moments is described in more detail in the Supporting
Information). Unfortunately, the transformation does not close
as defined, though closure can be enforced numerically with a
technique termed the quadrature method of moments
(QMOM).36 The QMOM utilizes only the moments of a
distribution to estimate integrals over the unknown distribu-
tion. The quadrature rule can be defined from the moments
using the product-difference algorithm developed by Gor-
don,37 by reformulating the model as a system of differential
algebraic equations (DAE) using the algebraic definition of the
quadrature rule,38 by tracking the weights and abscissas of the
quadrature rule directly through a Jacobian matrix trans-
formation,39 or by fixing the abscissas at zeros of an orthogonal
basis set and directly calculating the weights such that the
known moments are recreated exactly.40 The latter method has
been named the fixed point quadrature method of moments
(F-QMOM) and is used here. With the moments defined from
the moment ODEs and the abscissas (Lj) defined as zeros of
some orthogonal basis set, the weights (μj) can be calculated
from eq 8

∑ μ=m Lk
j

j
k

j
(8)

This can be written in matrix form by defining the matrix Q

= −LQ l j j
l

,
1

(9)

giving

μ=m Q (10)

The abscissas or lengths in the quadrature rule can be
chosen as the zeros of any orthgonal basis set of polynomials,
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although the choice of basis set will affect the computation
speed and accuracy.41 Once an orthogonal basis set is chosen,
the abscissas are known, and the matrix Q becomes constant
and known. Therefore, one can always define the weights as a
known linear combination of the moments as in eq 11

μ = −Q m1 (11)

Once the abscissas and weights are known, the remaining
integral term in eq 7 can be rewritten as the sum in eq 12

∫ ∫
∑ ∑

β λ λ λ

β μ μ

+

= +

∞ ∞
n u n u u

L L

2
( ) ( ) ( ) d d

2
( )

k

l
l

j
l j

k
j

0 0

3 3 /3

3 3 /3

(12)

This can be rewritten again as a compact function of only
the abscissas and moments by first defining a new three-
dimensional matrix Fk

= +l j L LF ( , )
1
2

( )k l j
k3 3 /3

(13)

then eq 12 becomes
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∞ ∞
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m Q F Q m
2

( ) ( ) ( ) d dk

k

0 0

3 3 /3

1 1
(14)

where ′ represents a vector or matrix transpose. For every k,
this vector-matrix multiplication results in a scalar sum of
moment terms up to order (N − 1), where N is the number of
moments tracked by the model. When written this way, one
can increase the accuracy (and computation time) at will by
increasing N and adding abscissas from higher-order
polynomials in the same orthogonal basis set. (Care should
also be taken to scale the moments, such that the distribution
can be accurately represented by abscissas ∈[0, 1]). After
nondimensionalization (details in Supporting Information),
the resulting model contains 3p + 1 ODEs and 5p − 1
parameters, where p is the number of solid forms included in
the model. When considering a metastable polymorph (e.g.,
vaterite = α) and a stable polymorph (e.g., calcite = β), p = 2,
and there are 5p−1 = 9 dimensionless parameters of which 2p
are exponents in the growth and nucleation rate laws (gi and
bi). The others are combinations of physical parameters that
make up dimensionless groups. For example, p − 1 of these
dimensionless groups are solubility factors that quantify the
differences in nucleation and growth driving forces among the
various solid forms (γ)

γ =
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−
<β α
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K K

C K
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eq,
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0 eq,
1/2

(15)

The other 2p are relative rates that can be rationally
manipulated (or engineered) by the intelligent selection of
process variables such as temperature, inlet supersaturation,
residence time, and solvent. These are termed Damköhler
(Dai) and Agglomeration (Ai) numbers
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where σi is the characteristic growth length for form i defined
as
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All variables are defined in the notation section, and the
nondimensionalization procedure that leads to these dimen-
sionless groups is detailed in the Supporting Information.
The Damköhler numbers are given this name due to their

physicochemical similarity to the Damköhler numbers in
reaction engineering. These groups are ratios of the residence
time to the crystallization time of each form, such that the rates
of nucleation and growth of form i are fast relative to the
process residence time when Dai is large, and slow when Dai is
small. The Daα group depends both on Keq,β

1/2 and Keq,α
1/2 because

the solute concentration is nondimensionalized with respect to
Keq,β
1/2 (see the Supporting Information for additional dis-

cussion). The Damköhler numbers and the solubility
correction factor (γ) were discussed in detail in our earlier
paper, although the notation is slightly different here due to the
reaction chemistry (to translate from one to the other, set Csat,i
= Keq,i

1/2). The Agglomeration numbers are a new feature of the
agglomeration-enabled population balance model. Each
Agglomeration number is a ratio of the process time (τ) to
the agglomeration time associated with that form (≈βi−1).
Therefore, agglomeration becomes a more dominant rate
process within the precipitator as the Agglomeration numbers
increase.
Now, the ODE system can be presented in terms of the

vector/matrix operations referenced in eq 14, the dimension-
less moments (ωi,k ∈ [0, ∞)), the dimensionless time (ξ ∈ [0,
∞)), the dimensionless solute concentration (y ∈ [0, 1]), and
the dimensionless groups. The 3p + 1 = 7 resulting ODEs are

ω
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In the limit Aα, Aβ → 0, the original, nonagglomerating
model is recovered.21 More details on the derivation and
nondimensionalization of both the stoichiometric (presented
here) and nonstoichiometric feed cases are provided in the
Supporting Information.
Parameter Continuation of Model Elucidates Steady

State Structure. Ideally, process engineers seek to under-
stand how process outputs change as functions of design and
operation decision variables. Some systems exhibit steady state
multiplicity, and in these systems, process dynamics play a
significant role in process design. Relating decision variables to
process outputs requires relating decision variables to the
relative dynamic stability of the qualitatively distinct steady
states. With this information, one can make rational design
decisions such that a preferred steady state is obtained and
maintains its dynamic stability. When this procedure proves
difficult or impossible, one can typically design new degrees of
freedom to expand the range of attainable outcomes (for
polymorph selection, one could imagine adding a solids
recycle, multiple crystallizers in series, templating additives in
the feed, changing the solvent, etc.).
This precipitator model predicts 4 qualitatively distinct

steady states: (1) trivial, (2) pure α polymorph, (3) pure β
polymorph, and (4) a mixed-polymorph steady state. The
trivial steady state occurs for processes exhibiting relatively low
Damköhler numbers, when the MSMPR residence time is
small relative to the characteristic nucleation and growth times
of both forms. In this limit, it is possible for the supersaturated
solution to flow into and out of the precipitator without any
precipitation occurring. The pure polymorph steady states are
characterized by one of the polymorphs being completely
absent from the reactor/crystallizer. The mixed-polymorph
steady state is characterized by nonzero amounts of both
polymorphs coexisting in the reactor at steady state. The first
three steady states were predicted by our previous non-
agglomerating model,21 but the last one is unique to the
agglomerating precipitator model. In some regions of
parameter space (i.e., for some sets of dimensionless
parameters implied by some choice of T, C0, and τ), only
the trivial steady state is possible. In other regions, two, three,
or four of the steady states described above become possible
solutions to the set of steady state algebraic equations implied
by the ODEs in eqs 19−25. For any set of parameters, only
one of these steady states will be dynamically stable, and that is
the one that the system will evolve toward and eventually
stabilize at.

The relationship between the parameters and the steady
state multiplicity is presented schematically in Figure 1. The

axes of Figure 1 contain two new dimensionless parameter
combinations, Φα and Φβ. In our earlier paper, a linear stability
analysis of the nonagglomerating model demonstrated that
these two combinations of parameters determine the relative
dynamic stability of the available steady states. All of the
bifurcations and steady state dynamic stability transitions in
the nonagglomerating model take on simple functional forms
when presented in terms of these stability groups, Φα and Φβ.
This construction allowed us to present all of the potential
process design trade-offs, bifurcations, and stability transitions
on a single two-dimensional figure, even though the model
contained seven dimensionless parameters. The stability
groups are defined in terms of the seven dimensionless
model parameters from the nonagglomerating model in eqs 26
and 27
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Physically, Φi is the inverse of the dimensionless solute
concentration (y) at the pure i polymorph steady state in the
absence of agglomeration (i.e., y−1 when only form i is present
and Ai = 0, see eqs 18 and 22 in our previous paper21).
Therefore, Φi increases as the total solid deposition rate of
form i increases. Qualitatively, one can think of these stability
parameters as modified Damköhler numbers. Both stability
groups are monotonically increasing functions of their
respective Damköhler numbers, so it is qualitatively correct
to equate the two when considering the results presented here.

Figure 1. Steady state multiplicity diagram, in which Φβ is plotted vs
Φα with parameter regions labeled to indicate the steady states that
are possible in the set of processes implied by each region of
parameter space. The steady state that is dynamically stable in each
region is labeled in green, bold face. The black lines represent
projections of bifurcation surfaces that are not functions of the
Agglomeration numbers. The red bifurcation surfaces collapse to the
Φα = Φβ line in the limit Aα, Aβ → 0. They collapse to the Φα = 1 and
Φβ = 1 lines in the limit Aα, Aβ → ∞. They are shown here
schematically for Aβ = Aα ≠ 0. The stability parameters (Φi on the
axes) are defined in eqs 26 and 27.
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Quantitatively, the distinction remains important during
process design.
The stability features of the agglomeration-enabled model

are easiest to explain and interpret when presented in terms of
the stability groups because several of the bifurcations and
steady state dynamic stability transitions are independent of
the Agglomeration numbers (discussed in detail later).
Throughout this article, several figures will have these stability
groups as axes because they represent a simple way to present
the stability features of all of the potential processes one could
build. When one makes a set of process choices (i.e., solvent,
T, C0, τ), a set of model parameters is implied (i.e., Dai, gi, bi. γ,
Ai). This set of parameters implies a value for the stability
groups (Φα, Φβ), which defines a point at some position on the
stability or steady state multiplicity diagrams presented here.
Therefore, each position on one of these diagrams represents a
potential process, and one can intentionally move around the
diagram by making rational design and operation decisions
according to the various relationships among the model
parameters and the stability groups described in eqs 15−18
and 26 and 27.
For example, Figure 1 shows how the steady state

multiplicity changes as one varies the absolute and relative
magnitudes of the stability groups (modified Damköhler
numbers). Specifically, it indicates that the trivial steady state
is the only possible steady state when the stability groups are
both less than 1. As the stability groups increase, two, three, or
four steady states become possible. The red lines separating the
regions of three possible steady states from the regions of four

possible steady states are the only curves on Figure 1 whose
positions depend on the Agglomeration numbers. That
dependence, and the relationship between the Φi, the Ai, and
the dynamic stability of the different steady states will be
discussed in detail in the next section.
The nonlinearities introduced by the agglomeration terms

have prevented the determination of analytic expressions for
the states as a function of the parameters at the various steady
states. When a system of algebraic equations does not have an
analytic solution such that the states can be written as explicit
functions of the parameters, the parameter/solution structure
can be elucidated through the use of a number of different
numerical analysis techniques. Here, arc-length continuation
was utilized to determine the steady state solution structure as
a function of the parameters, Φα and Φβ.

42−44 Figure 2
illustrates how the steady state structure varies as a function of
Aα for a fixed value of Daα, Daβ, γ, gα, gβ, bα, and bβ and three
select values of Aβ (Aβ = 0, 0.1, 1.5). The remaining parameters
(Daα, Daβ, γ gα, gβ, bα, and bβ) were chosen such that the
metastable polymorph (α in general or vaterite specifically) is
the only form present at steady state in the absence of
agglomeration (i.e., Φα = 1.4, Φβ = 1.3, Aα = Aβ = 0). Along the
ordinate in Figure 2a and d, both Aα and Aβ are zero,
corresponding to the nonagglomerating limit discussed in our
previous paper.21 At this point in parameter space, there are
three distinct steady states. At the (dynamically unstable)
trivial steady state, y = 1 and ωα,0 = 0. By comparison, at the
(dynamically stable) pure α steady state, y ≈ 0.72 and ωα,0 ≈
1.3. At the (dynamically unstable) pure β steady state, y ≈ 0.78

Figure 2. Bifurcation diagrams (state variables vs Aα) at fixed values of the stability groups (Φα = 1.4 and Φβ = 1.3) for three values of the β form
Agglomeration number, Aβ; In (a) and (d), Aβ = 0; (b) and (e), Aβ = 0.1; (c) and (f), Aβ = 1.5. ωα,0 is the dimensionless steady state zeroth
moment of the thermodynamically metastable polymorph distribution (dimensionless total α crystal number density). y is the dimensionless steady
state solute concentration. Four qualitatively distinct steady states are present in the bifurcation diagrams. The mixed-polymorph steady state
becomes possible when Aα ≥ Aα

crit (≈0.5 for this example). Per convention, dynamically stable steady states are represented as solid curves and
unstable ones as dotted or dashed. These figures were generated with gi = 1.5, bi = 2.5, and γ = −0.0042, which are typical values representative of
many systems for gi and bi. γ = −0.0042 is representative of the CaCO3 experiments reported in this paper and is exact for the experiments
described in Figure 5.
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and ωα,0 = 0 (ωβ,0 is not shown here, but it is nonzero). Now
consider the pure α curves (red). For each value of Aβ

reported, the value of y at the pure α steady state increases
as Aα increases. This is expected because agglomeration events
reduce surface area. As agglomeration becomes more prevalent
in the MSMPR precipitator, the average crystal size increases
(due to agglomeration) and the total (distribution integrated)
surface area decreases. Crystals grow from the surface, so
increasing agglomeration tends to lower the total solute
deposition rate from solution, thereby pushing C closer to C0
and increasing the dimensionless reactor supersaturation (y). A
bifurcation occurs at a critical value of Aα (designated Aα

crit ≈
0.5 in this example), at which point a new, mixed-polymorph
steady state becomes possible and dynamically stable for Aα >
Aα
crit. All of our calculations indicate that this bifurcation occurs

at the value of Aα for which the steady state value of y is the
same at both the pure α steady state and the pure β steady
state in the limit Aβ = 0 (i.e., the set of parameters for which
yα,Aα≠0 = f(Daα, gα, bα, γ, Aα) = yβ,Aβ=0 = g(Daβ, gβ, bβ)). This
observation is consistent with the calculations shown here, and
with all similar calculations we have performed while studying
this system.
Although Aα

crit is the same for all Aβ at fixed values of Φα and
Φβ, the value of Aβ does affect the quantitative values of the
states at the mixed-polymorph steady state when Aα > Aα

crit. In
fact, one can tell from these diagrams that increasing either of
the Agglomeration numbers at fixed values of the other
parameters tends to direct the quantitative value of each of the
states at the mixed-polymorph steady state toward the value
each would have at the opposite form pure steady state. For
example, in Figure 2a−c, the values of the mixed polymorph
ωα,0 (blue) approach the pure α curve (red) as Aβ is increased.
In other words, the mixed-form distribution approaches a pure
α distribution as Aβ increases. This is again consistent with the
fact that increasing the importance of agglomeration results in
a lower total growth rate of a given solid form. Similar trends
are observed in the y vs Aα curves for both the mixed-
polymorph steady state and the pure α steady state. The solute
concentration at the mixed-polymorph steady state approaches
the quantitative value associated with the pure β steady state as
Aα increases. Similarly, the solute concentration at the pure α
steady state approaches the quantitative value associated with
the trivial steady state as Aα increases. Both trends are again
consistent with the fact that higher Aα slows the total α growth
rate. Lowering the total α growth rate at fixed β parameters
evolves the mixed-polymorph steady state toward the pure β
steady state and the pure α steady state toward the trivial
steady state.
Numerical Stability Analysis. The linear stability analysis

performed on the previous model is not possible on the more
complicated agglomerating model. Nevertheless, many of the
findings from the nonagglomerating model can be applied to
the numerical analysis of the agglomerating model. For
example, several of the lines in parameter space that served
as stability limits and bifurcations in the simpler model can be
extended into the agglomeration dimensions, generating
stability transition surfaces in higher dimensions. These
similarities will be discussed after describing our numerical
approach to analyzing the highly nonlinear, agglomerating
crystallizer model.
Stability transitions in the full agglomerating model are

summarized in Figure 3. These figures were generated
numerically by solving the full model for many different values

of the 9 parameters. Each transient was evolved until the time
derivatives of the moment and mass balance ODEs became
zero (with “zero” defined as <0.0001). Then the resulting
(stable) state vector was associated with one of the qualitative
steady states (trivial, pure α, pure β, or mixed). The data are
presented as projections of the nine-dimensional parameter
space onto the two-dimensional stability parameter space
defined by Φα and Φβ. This presentation represents all of the
stability transitions exactly when Aα = Aβ = 0 (see Figure 3a). It
remains useful even when Ai ≠ 0, because many of the general
stability transitions can be described in terms of the two
stability parameters (Φα and Φβ) alone, and even the higher
dimensional bifurcation surfaces become weak functions of the
other parameters when presented in this way.
For example, neither the stability transition from the trivial

steady state to the pure α steady state nor the transition from
the trivial state to the pure β steady state is a function of the
Agglomeration numbers (see Figures 1 and 3). The trivial
steady state is linearly stable when

Φ <α 1 (28)

Φ <β 1 (29)

This is unchanged from the previous, nonagglomerating
model. Also similar to the previous nonagglomerating model,
both surfaces in parameter space defined by Φα = 1, Φβ ∈ [0,
1], Aα ∈ [0,∞) and Φβ = 1, Φα ∈ [0, 1], Aβ ∈ [0,∞) separate

Figure 3. Plots of Φβ versus Φα for the Agglomeration numbers, Aα =
Aβ = (a) 0, (b) 0.1, (c) 1.5, and (d) 150. Each point represents a
potential process with a set of relative rates defined by the
dimensionless groups (Φα, Φβ, Aα, and Aβ). These stability diagrams
illustrate the relationships among the relative rates (dimensionless
groups) and the relative steady state dynamic stabilities of the four
qualitatively distinct steady states. The region of parameter space
characterized by the relative dynamic stability of the mixed-
polymorph steady state is shaded yellow. This region exists only
along the Φα = Φβ line when Ai = 0. It emanates from this line in
either direction as the Agglomeration numbers increase, and it covers
the entire region described by eqs 34 and 35 in the limit Aα = Aβ →
∞. Figure 3a−d were calculated with γ = −0.0042 (the value
associated with the experiments described in Figure 5), gi = 1.5, and bi
= 2.5 (generally representative of many systems).
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the region of stable trivial steady states from the regions
characterized by the dynamic stability of either the pure α or
pure β steady state, respectively. Independent of Agglomer-
ation numbers, the pure α steady state is always dynamically
stable when

Φ >α 1 (30)

Φ <β 1 (31)

and the pure β steady state is always dynamically stable when

Φ <α 1 (32)

Φ >β 1 (33)

(see Figures 1 and 3). These relationships would be difficult to
establish from the nine-dimensional numerical data without
the guidance provided by the analytic results from our earlier
study.21 These past results enabled us to hypothesize that the
stability transitions in the Φα−Φβ plane that exist when Ai = 0
may remain independent of Ai for the case Ai ≠ 0. This
hypothesis was tested and confirmed for the trivial to pure α
and trivial to pure β transitions with the numerical approach
described above. Equations 34 and 35 define the remaining
region of parameter space. This is the only region of parameter
space in which the steady state dynamic stability is affected by
the Agglomeration numbers.

Φ >α 1 (34)

Φ >β 1 (35)

In the absence of agglomeration (Aα = Aβ = 0, Figure 3a), the
dynamic stability of this region is entirely determined by the
relative magnitudes of Φα and Φβ. When Φα > Φβ, the pure α
steady state is dynamically stable and when Φα < Φβ, the pure
β steady state is dynamically stable. In the absence of
agglomeration, mixed-polymorph steady states are only
possible along the line Φα = Φβ. A steady state that is only
possible along a line in parameter space cannot be observed
experimentally (infinitesimal variations or disturbances in any
parameter result in departures from the exact operating
conditions necessary to maintain one’s position on the line),
so we deemed it unworthy of substantial discussion in our
previous paper. This transition line becomes a transition region
in the presence of agglomeration, enabling the observation of
these mixed polymorph steady states. The region of mixed-
polymorph dynamic stability emanates from this line as the
Agglomeration numbers increase (see Figures 3b, c) and
eventually covers the entire region defined by eqs 34 and 35 in
the limit Aα, Aβ → ∞ (see Figure 3d).
For each figure shown, gα, bα, gβ, bβ, and γ were fixed, and

Daα and Daβ were manipulated to vary Φα and Φβ. This
procedure was repeated for several fixed values of Aα and Aβ.
Away from the limits of Ai ≈ 0 and Ai ≈ ∞, most of the
variations in the mixed-polymorph/pure polymorph bifurca-
tion surfaces as functions of the parameters (and all of the
variation in the other bifurcation surfaces) can be explained by
these four parameters alone. In fact, when the stability results
are projected onto this two-dimensional stability plane (as in
Figure 3), the surface projection characterized by Φα > Φβ only
depends on Aα, γ, gα, and bα, while the surface projection
characterized by Φα < Φβ only depends on Aβ, gβ, and bβ.
Additional discussion of where the bifurcation surfaces
generally exist within parameter space and of the (relatively

small) movement of the bifurcation surfaces due to changes in
the other parameters (γ, gi, and bi) is in the Supporting
Information. The two intermediate values of Aα = Aβ = 0.1, 1.5
in Figure 3b,c were chosen to represent moderate and high
Agglomeration numbers. Figure 3d, where Ai = 150, is included
as a proxy for the limit as Ai → ∞, but its inclusion is not
meant to imply that Agglomeration numbers of this magnitude
are attainable. Figure 3 is intended to be as representative as
possible of the CaCO3 experiments presented in this article,
but it is difficult to exactly define the bifurcation surfaces in this
system due to the lack of relevant kinetic data. However, the
positions of the bifurcation surfaces (with respect to the
stability parameters, Φi) are weak functions of the unknown
parameters, and these parameters are physically well-con-
strained. Thus, these limitations barely reduce the utility of the
analysis.
From the above analysis, much can be learned and applied to

the production of vaterite. First, outside the mixed-polymorph
stability region, the dynamic stability features of this model are
remarkably similar to those of the nonagglomerating model. A
region of trivial steady state dynamic stability remains,
characterized by low residence times relative to the nucleation
and growth times of both forms. Regions of parameter space
also exist in which one expects to observe pure calcite and pure
vaterite steady states. Second, the region in which the mixed-
polymorph steady state is dynamically stable is localized
around the original bifurcation line (Φα = Φβ). Third, the
mixed-polymorph stability region grows as the Agglomeration
numbers increase. These three observations provide enough
information to design polymorph selective processes for
agglomerating precipitators. Observation 2 implies that by
holding Aα and Aβ constant, one can decrease the relative
stability of the mixed-polymorph steady state by moving
orthogonally away from the Φα = Φβ line. Observation 3
implies that by holding Φα and Φβ constant, one can
destabilize the mixed-polymorph steady state by decreasing
Aα or Aβ. Combining these two observations, any design or
operation decision that moves the process toward lower
Agglomeration numbers or away from the Φα = Φβ line will
tend to destabilize the mixed-polymorph steady states in favor
of the pure form steady states. The pure form steady state that
this change will stabilize will depend on the relative
magnitudes of Φα to Φβ, i.e., on which side of the Φα = Φβ

line the operating point falls.
In general, most of the model parameters (dimensionless

groups) vary as functions of temperature (T). Therefore, the
stability parameters (Φα and Φβ) are also functions of
temperature. This implies that changing temperature (while
holding all other decision variables constant) changes the
relative values of both the stability parameters (Φi) and the
Agglomeration numbers (Ai), moving an operating point
around Figure 3. For some changes in temperature, a different
steady state will become dynamically stable. If one can
characterize the growth kinetics, nucleation kinetics, and
solubilities of both forms as functions of temperature, then
temperature becomes a valuable decision variable to use for
polymorph selection.
The inlet concentration (C0) is another design choice that

can be used to select the relative values of the stability groups
and the Agglomeration numbers, and accordingly, the steady
state solid form produced. System-specific nucleation and
growth rate expressions are required to define the exact
relationships between inlet concentration, the stability groups,
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and the Agglomeration numbers, but scaling arguments can be
used to make intentional design decisions in systems for which
the kinetics have not yet been characterized. For example, the
stability groups increase linearly with increases in the inlet
concentration, and the Agglomeration numbers decrease by
the nonlinear scaling Ai ≈ Co

−(3gi−1) (see eqs 15−18 and 26 and
27). Typically, the quantity 3gi − 1 ≈ 5 and system-specific
knowledge is unnecessary to bound the quantity between 2
and 5 because gi typically varies between 1 and 2. Therefore,
Agglomeration numbers decrease at a rate between Co

−2 and
Co
−5. This nonlinear Agglomeration number decay, coupled

with the linear increases of Φα and Φβ, is enough information
to accomplish polymorph selection in many systems, even if
the exact nucleation and growth kinetics (and therefore the
exact functional forms of Φi = fΦ(C0) and Ai = fA(C0)) are
unknown. Increasing Co has a larger effect on shrinking the
region of mixed-polymorph dynamic stability than it does in
affecting the relative polymorphic nucleation and growth rates
that move an operating point around the [Φα, Φβ] plane. For
example, doubling the inlet concentration decreases the
Agglomeration numbers by a factor between 4 and 32. Since
typical Agglomeration numbers vary between 0 and 1.5, and
since Figure 3b illustrates how small the mixed-polymorph
region becomes for Ai ≤ 0.1, a small increase in the inlet
concentration will have a relatively large effect on shrinking the
mixed-polymorph stability region and a relatively small effect
on the relative dynamic stability of the pure polymorph steady
states. Furthermore, if a set of design choices is known to yield
a mixed-polymorph steady state for which the more prevalent
form is desired (as in Figure 5), one could reasonably conclude
that the system is in a position on the stability diagram for
which Φdesired > Φundesired. Therefore, a hypothesis emerges
from these scaling arguments: one can design a polymorph
selective process for an agglomerating crystal system by using
the design rules from the nonagglomerating model while
maintaining a high inlet supersaturation.
Similar scaling arguments also apply to residence time (τ).

The Φi scale as τ
3/(2gi+bi) and the Agglomeration numbers scale

as τ−2. The quantity 3/(2gi + bi) ∈ [0, 1], so increasing
residence time is also a reasonable approach when attempting
to destabilize a mixed-polymorph steady state. Still, increasing
C0 is likely a better option to try first for two reasons. First, the
difference in scaling between the Φi and the Ai is typically
larger for C0, indicating that the destabilizing effect should be
more effective for a smaller change in C0 (and therefore a
smaller displacement in the [Φα, Φβ] plane). Furthermore, we
demonstrated in our earlier study that increasing residence
time always increases the relative value of the thermodynami-
cally stable solid form’s stability group to the thermodynami-
cally metastable solid form’s stability group. Therefore, a large
enough increase in residence time is guaranteed to give a pure,
thermodynamically stable solid form at steady state. For some
applications, that may be ideal, but for our motivating system
of vaterite precipitation, increasing C0 is a superior design
choice. Still, Figure 5a,b illustrates that the relative fraction of
vaterite increased when the residence time was increased,
indicating that both strategies could be effective in this system.

■ EXPERIMENTAL SECTION
Materials and Apparatus. Experiments were performed in a 1 L

LabMax reactor (Mettler Toledo, see Figure 4). The reactor
temperature was controlled to 25 °C. Inlet and outlet flows were
calibrated to maintain an active reactor volume in the range of 0.2−

0.6 L, so that the residence time could be varied between 6 and 18
min. During each experiment, two separate equimolar (stoichio-
metric) flows of aqueous Na2CO3 and CaCl2 were fed to the MSMPR
reactor. The 99%+ purity solid reactants were purchased from Fisher
Chemical, and used as-received. The water used to generate the
aqueous feed solutions was filtered in a Barsted NANOpure water
filtration system with a conductivity of 18 μΩ cm−1. As two separate
equimolar streams were fed to the reactor, the inlet concentration as
defined in the model (C0) is one-half the molar concentration in
either feed stream (see Supporting Information for discussion). A set
of experimental conditions were repeated to confirm the reproduci-
bility of the experimental procedure (as discussed in the Supporting
Information).

Product Characterization. The pH of the solution inside the
reactor was measured every 3 s with a Fisher Scientific accumet
AB150. Precipitator dynamics were also monitored at discrete 30 min
intervals with powder X-ray diffraction on the effluent solids. Steady
state was declared when both measurements ceased changing in time
(±3% for phase fractions and ±0.01 for pH). The process dynamics
can be monitored with pH because the well-understood reaction
equilibrium is very pH sensitive (see the Supporting Information for
discussion of the chemistry and justification of this procedure). Solid
CaCO3 was continuously removed from the reactor in the exit
suspension stream and filtered in a Büchner funnel with a 0.3 μm
filter. The solids were then dried in an oven for 24 h at 70 °C before
further characterization.

Figure 4. Experimental apparatus (top) and schematic (bottom) for
continuous precipitation experiments in which Na2CO3 and CaCl2
were converted to CaCO3. Temperature was controlled to 25 °C for
all experiments. The inlet concentration was varied from 0.0025 to
0.15 molar. The residence time was varied between 6 and 18 min.
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Complementary powder X-ray diffraction (XRD), solid-state 43Ca
nuclear magnetic resonance spectroscopy (NMR), and electron
microscopy (SEM) analyses were used to characterize the local and
long-range order, compositions, and morphologies of the crystal-
lization products. Powder XRD patterns were acquired under several
different drying procedures to confirm that the described drying
process did not alter the polymorph distribution (see Supporting
Information for details.) Once dry, XRD patterns of the solid
products were acquired on an Empyrean Powder Diffractometer, and
phase-fitting of the pattern was completed in Highscore (PANalytical
XRD analysis software). Select samples were also characterized with
scanning electron microscopy (SEM) on a FEI Nova Nano 650 FEG
SEM. Characterization of 43Ca is difficult due to its low gyromagnetic
ratio (−1.803 × 107 rad T−1 s−1), low natural isotopic abundance (≈
0.135%), and the general difficulties associated with quadrupolar
nuclei (7/2 spin). These challenges were mitigated with high
magnetic fields (19.6 T) and a custom-built 7 mm single-resonance
probe specifically designed for low-γ nuclei at the U.S. National High
Magnetic Field Laboratory in Tallahassee, Florida. Solid-state, single-
pulse 43Ca magic-angle-spinning (MAS) NMR spectra of select
samples were acquired on a 19.6 T Bruker DRX NMR spectrometer
under magic-angle-spinning (MAS) conditions of 5 kHz, 25 °C, 90° 4
μs pulses, and a 0.5 s recycle delay. The 43Ca shifts were referenced to
1 molar aqueous CaCl2. Additional diffraction patterns and solid-state
43Ca NMR spectra are included in the Supporting Information,
including a 43Ca NMR spectrum of a sample containing calcite,
vaterite, and aragonite phases,which shows resolved 43Ca signals from
each phase. The peaks are centered at 20 ppm, 3 ppm, and −27 ppm,
but the exact location of the peaks is sensitive to the reference
concentration chosen.45

■ RESULTS AND DISCUSSION
Evidence of Mixed Polymorph Steady States. Mixed-

polymorph steady states are often observed during the
continuous precipitation of CaCO3, but these steady states
are not possible solutions to population balance models for
which the dominant rate processes are secondary nucleation
and size-independent linear crystal growth alone.21 We have
demonstrated (using arc-length continuation and a numerical
stability analysis) that mixed-polymorph steady states are
possible and even dynamically stable for some agglomerative
precipitation process models. In this section, we discuss two
experiments for which such mixed-polymorph steady states
were observed. These experiments were performed with a
stoichiometric feed of Na2CO3 and CaCl2 at a concentration
(C0) of 0.0125 molar and a temperature (T) of 25 °C. The
residence times (τ) were 6 and 9 min for Figure 5a and b,
respectively. The percentage of the effluent solids that was
associated with each polymorph at each time point was
determined using powder X-ray diffraction and Rietveld phase
fitting. For example, Figure 5 illustrates how the effluent crystal
polymorph distribution changed as a function of time during
these two experiments (% polymorph defined as mass of solid
form i/total mass of solids ×100%). In Figure 5a,b, the
polymorph distributions vary with time during start-up but
eventually plateau, indicating that a steady state has been
reached. In each case, the crystal distribution leaving the
precipitator at steady state contains nonzero amounts of both
calcite and vaterite polymorphs (75% vaterite for τ = 6 min
and 93% vaterite for τ = 9 min), indicating that some rate
process besides size-independent linear crystal growth and
secondary nucleation must be important.
Figure 6 shows typical SEM images of the effluent crystals

after filtration and drying. Figure 6a is an image of product
crystals collected after 30 min of operation for T = 25 °C, C0 =
0.0125 M, and τ = 9 min (Figure 5b) . After 30 min, the

process was still exhibiting start-up dynamics (≈ 42% calcite),
resulting in a mixture of calcite (cube-like) and vaterite
(spheroidal) crystallites. A significant extent of crystal

Figure 5. Percentages of the different CaCO3 polymorphs plotted as
functions of time during continuous precipitation for T = 25 °C, C0 =
0.0125 M, and (a) τ = 6 min, or (b) τ = 9 min. Both vaterite
(thermodynamically metastable) and calcite (thermodynamically
stable) coexist at steady state in both experiments. These are typical
experiments that exhibit a dynamically stable mixed-polymorph steady
state.

Figure 6. Representative SEM images of effluent cube-shaped calcite
crystallites and spheroidal vaterite crystallites after (a) 30 min and (b)
60 min of start-up of a continuous CaCO3 precipitation experiment
operating at T = 25 °C, C0 = 0.0125 M, and τ = 9 min. Both images
exhibit mixed-polymorph distributions and significant agglomeration.
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agglomeration is also observed. Figure 6b is a representative
image collected after 60 min of operation for T = 25 °C, C0 =
0.0125 M, and τ = 9 min. This point in the start-up dynamics is
closer to the steady state distribution and therefore exhibits a
relatively low calcite fraction (16%). Again, the image clearly
shows that both solid forms are present along with significant
agglomeration.
Testing the Hypothesis. The previously discussed

analysis indicated that increasing the inlet concentration
(C0), while holding all other decision variables constant with
respect to the experiment described in Figure 5a, should have a
destabilizing effect on the mixed-polymorph steady state in
favor of the pure vaterite steady state. Figure 7 illustrates how

the steady state values of the different polymorph percentages
changed as a function of C0 at the fixed residence time (6 min)
and temperature (25 °C) corresponding to the conditions used
in Figure 5a. When C0 = 0.0125 molar, the steady state
distribution contained approximately 75% vaterite and 25%
calcite (green points). When C0 was increased by a factor of 12
to C0 = 0.15 molar, the steady state percentage of vaterite
approached 100%. These CaCO3 data indicate that increasing
inlet supersaturation decreases the relative importance of
agglomeration inside the continuous MSMPR precipitator,
thereby destabilizing the mixed-polymorph steady state in
favor of a pure polymorph steady state.
Characterization of the effluent products establishes that for

τ = 6 min, T = 25 °C, and Co = 0.15 M, the thermodynamically
metastable polymorph, vaterite, is almost exlcusively present.
Figure 8 shows a powder X-ray diffraction pattern (XRD), a
solid-state 43Ca NMR spectrum, and two SEM images of these
effluent solids. All of the major reflections in the XRD pattern
are indexable to vaterite, although a minor reflection exists that
may be indexable to calcite (<1%). The solid-state 43Ca MAS
NMR spectrum in Figure 8b shows a broad signal centered at 3
ppm that is assigned to Ca2+ ions in a distribution of local
vaterite environments.46,47 An additional 43Ca MAS NMR
spectrum acquired on a solid mixture of calcite, vaterite, and
aragonite under otherwise identical conditions is included in
the Supporting Information. This additional spectrum shows

two additional 43Ca peaks. In Figure 8b, there is no observable
NMR signal at either 20 ppm (calcite) or −27 ppm
(aragonite), indicating that the sample is predominately
vaterite. Furthermore, the representative SEM images in Figure
8c,d show only spheroidal vaterite crystallites with no cube-
shaped calcite crystallites present.
The agglomeration prevalent in the SEM images highlights

an important point. Increasing the inlet concentration does not
necessarily lower the agglomeration rate. In fact, nonconstant
agglomeration kernels (βi) are known to increase as super-
saturation increases.28,48,49 The important distinction is that
the agglomeration kernel (βi) is only one component of the
Agglomeration number (Ai), and it is this Agglomeration
number that affects the steady state dynamic stability. The
Agglomeration number depends on βi, but it also depends on
the crystal growth kinetics and the residence time. In this case,
increasing the inlet concentration lowered the Agglomeration
number and destabilized the mixed polymorph steady state,
even though the absolute agglomeration frequency likely
increased.

Other Polymorphic Systems. The previous polymorph
selection design rules were constructed to be generally
applicable to any bipolymorphic system in which size-
independent linear crystal growth and secondary nucleation
are the dominant rate processes. The design rules were tested
for specific crystal systems for which relevant experiments had
been reported in the literature (e.g., L-glutamic acid and p-
aminobenzoic acid21). These analyses were carried out under
the implicit assumption that agglomeration was unimportant in
these systems, and the design rules generated in this way were
consistent with the reported experimental results. Now that the
effect of agglomeration on steady state dynamic stability during
continuous precipitation has been demonstrated to be
important in some systems, we revisit the previous
assumptions and results, specifically taking into account the
agglomeration kinetics in the L-glutamic acid system.
Using the expressions from Lindenberg et al.,48 we estimate

the size-independent α form agglomeration kernel (βα) to be
in the range of 3.6 × 10−12 − 6.5 × 10−12 m3/s, depending on
the experimental conditions. These are relatively high values
for β: for example, β is on the order 10−17 for calcium
oxalate,50 10−14 for CaCO3,

51 and general hydrodynamic
approximations in the high growth rate and high collision
frequency limit are 10−18−10−16.52 A relatively high value of βα
suggests that agglomeration could be important in this system;
however, the physicochemically important quantity is the
dimensionless Agglomeration number (Aα), which is also
affected by the growth kinetics and the residence time.
The Agglomeration number can be estimated for the four L-

glutamic acid experiments that were reported by Lai et al. and
discussed in our previous paper by taking the agglomeration
kinetics from Lindenberg et al. and the growth kinetics from
Lai et al.19,21,48 The relevant experiments were numbered 1−4
and described in Table 1 in Lai et al.19 During each
experiment, L-glutamic acid was continuously crystallized to
give pure steady state distributions of the thermodynamically
metasatable α-polymorph at a temperature of 25 °C and a feed
concentration of 40 g/kg. The residence time was varied from
30 to 120 min in equal increments. Taking the maximum
agglomeration frequency rate coefficient from our estimated
range (βα = 6.5 × 10−12), the Agglomeration numbers
associated with these four experiments are 0.148, 0.028,
0.011, and 0.005, respectively. Figure 9 shows the outer

Figure 7. Plots of the steady state percentage of vaterite and calcite
polymorphs obtained for various values of C0 at fixed values of τ (6
min) and T (25 °C). As the inlet concentration is increased, the
fraction of effluent crystals identified as vaterite increases and
eventually approaches 100%. The green points indicate the steady
state polymorph distribution associated with the experiment described
in Figure 5a.
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envelope of the mixed-polymorph dynamic stability region
defined for Aα = Aβ = 0.148. The ordered pairs [Φα, Φβ]
associated with the same experiments are also included on
Figure 9 to illustrate that these experiments were not near the
mixed-polymorph/pure α polymorph dynamic stability boun-
dary. These calculations support the assumptions in the
previous analysis and support the simpler theoretical treatment
that is typically used in the L-glutamic acid system.
While the motivating application for this work was CaCO3

precipitation, the model and the analysis are general and can be
expected to apply to other agglomerative precipitations. For
other systems with different nucleation, growth, and
agglomeration kinetics, one can use Figure 3 to interpolate
an approximate mixed-polymorph/pure-polymorph bifurcation
surface. We expect that most systems will exhibit Agglomer-
ation numbers in the range of 0−1.5. As one can see from
Figure 3c,d, Ai = 1.5 is already qualitatively similar to the Ai →
∞ limit, so most interpolations should be possible with just
Figure 3 alone. To further facilitate this type of interpolation
for other systems, we have provided additional numerical
results in the Supporting Information with alternate combina-
tions of γ, gi, and bi.

■ CONCLUSION
Differences in crystal structure imply and typically correlate to
differences in measurable macroscopic properties. These
properties often have a significant impact on a material’s
utility for a given application, and therefore a preferred solid
form usually exists when one designs an industrial crystallizer
or precipitator. Previously developed polymorph selection

Figure 8. (a) Powder X-ray diffraction pattern, (b) solid-state, single-pulse 43Ca MAS NMR spectrum, and (c,d) SEM images. Product collected
from a continuous precipitation experiment operating under steady state conditions, a residence time (τ) of 6 min, a temperature (T) of 25 °C, and
an inlet concentration (C0) of 0.15 molar. All major reflections in the XRD pattern are indexable to vaterite, although a minor reflection may be
indexable to calcite (<1%). The 43Ca MAS NMR spectrum was acquired at 19.6 T, 25 °C, 5 kHz MAS, and required a 47.6 h acquisition time,
yielding a single peak centered around 3 ppm. The spheroidal crystallites in (c) and (d) are consistent with vaterite.

Figure 9. Stability diagram for L-glutamic acid, in which Φβ

(thermodynamically stable form) is plotted versus Φα (thermody-
namically metastable form) with parameter regions labeled to indicate
the steady state that is predicted to be dynamically stable in each
region. The mixed-polymorph dynamic stability region is shaded
yellow for Aα = Aβ = 0.148. This is the highest Agglomeration number
of all of the L-glutamic acid experiments considered in our previous
publication (experiments originally reported in Lai et al.).19,21 The
experiments were performed at 25 °C, C0 = 40 g/kg, and τ = 30
(black), 60 (green), 90 (blue), and 120 min (red). For this figure, γ =
−0.07, gα = 1.31, bα = 2.62, gβ = 1.10, and bβ = 2.81, consistent with
the calculations discussed in our previous article.21 The polymorph-
ically pure, thermodynamically metastable, polymorph (α) is
predicted by the agglomeration-enabled design rules and also
observed experimentally.
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design rules did not account for crystal agglomeration, so a
new approach was required to develop polymorph selective
precipitators for the CaCO3 system. Here, we have shown that
agglomeration changes the relative dynamics within the
crystallizer/precipitator, thereby affecting the relative dynamic
stability of the four competing steady states. The new design
rules presented here can be utilized to direct solid form during
agglomerative precipitations, even if the preferred solid form is
thermodynamically metastable. Pure, thermodynamically meta-
stable, technologically preferred, vaterite (CaCO3) crystal
distributions have been produced in accordance with the
process conditions indicated by the model analysis presented
here.
Each of the three systems that have experimentally

corroborated the polymorph selection design rules presented
here and in our earlier paper are capable of exhibiting two
crystalline polymorphs near experimental conditions. The two-
polymorph case has been explicitly modeled and analyzed here,
but the conclusions are expected to be broadly applicable to
noncrystalline and multipolymorph systems. The model
equations and analysis are expected to apply to noncrystalline
forms because the rate expressions that govern the nucleation,
growth, and agglomeration of noncrystalline forms are similar
to the expressions that govern crystalline forms. The arguments
and conclusions are also anticipated to apply to systems
capable of exhibiting more than two solid forms over a range of
experimental conditions. In fact, several other solid forms of
CaCO3 are possible at slightly higher and lower temperatures.
We expect that additional analysis and kinetic characterization
of the CaCO3 system will yield a higher dimensional version of
Figure 2 that one could utilize to select conditions for
precipitating any of these solid forms.
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■ NOTATION

ni (number/volume/length) particle density of polymorph i
Gi(length/time) growth rate of polymorph i
x (length) crystal length coordinate
βi (volume/number/time) polymorph i agglomeration fre-

quency rate coefficient
τ (time) MSMPR residence time
Bi (number/(volume-time)) nucleation rate of polymorph i
C (mol/volume) solute concentration
ki,g (length/time) rate constant in growth rate

expression
ki,b (number/length2/time) rate constant in birth rate

expression
ρ (mol/volume) molar density
μi,l (number/volume) weight l of form i quadrature

rule
Lj (length) length or abscissa in the quad-

rature rule
mi,0 (number/volume) zeroth moment of polymorph i

population
mi,1 (length/volume) first moment of polymorph i

population
mi,2 (length

2/volume) second moment of polymorph i
population

ωα,j (dimensionless) dimensionless jth moment of α
population

ωβ,j (dimensionless) dimensionless jth moment of β
population

y (dimensionless) dimensionless concentration
Keq,i (moles2/volume2) equilibrium/solubility constant

for solid form i
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S1: Summary of CaCO3 chemistry

Precipitator dynamics were monitored continuously via pH and at discrete 30 minute inter-

vals with powder X-Ray diffraction on the effluent solids. Steady-state was declared when

both measurements ceased changing in time (±3% for phase fractions and ±0.01 for pH).

The process dynamics can be monitored with pH because the reaction equilibrium is very

pH sensitive. A complete set of linearly independent reactions that occur in the MSMPR

crystallizer are summarized below:

CO2 + OH− ⇀↽ HCO−3 (S1)

HCO−3 + OH− ⇀↽ CO2−
3 + H2O (S2)

H2O ⇀↽ H+ + OH− (S3)

Ca2+ + CO2−
3
⇀↽ CaCO3,(s,i) (S4)

where CaCO3,(s,i) indicates solid form i. As reaction S4 (the precipitation) proceeds, CO2−
3

is removed from solution. By Le Chatelier’s principle, this tends to drive reactions S1 and

S2 forward, decreasing the pH. The reaction chemistry is coupled to the nucleation and
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growth rates through the supersaturation. Therefore, the pH will not “line out” until the

precipitation process has reached a steady-state, making pH a simple and effective leading

steady-state indicator for the CaCO3 system. Once the dynamic start-up phase of the

experiment is complete, X-Ray diffraction phase fitting gives identical phase fractions for

subsequent measurements spaced several residence times apart.

The equilibrium concentrations of CO2, HCO−3 , and CO2−
3 change as the pH is changed

in a fixed volume of water with a fixed amount of carbon (closed batch system). At “high

pH” essentially all of the carbon is in the CO2−
3 form. For the experiments discussed in this

paper, the lowest steady-state pH value was 10.1 and typical values varied between 10.4 and

10.6. Just one tenth of a millimolar of net back reaction from Equation S2 is necessary to

move the pH from 7 to 10, so choosing CO2−
3 as a carbon source for our experiments (i.e.,

Na2CO3) ensures that the experiment will operate at “high” pH.

S2: Model details

This section provides some of the mathematical details that were omitted from the main text

for brevity. The governing partial differential integral equation is not derived here because

an excellent, detailed derivaiton already exists in the published literature.1 The Equation is

repeated here for the reader’s convenience.

∂ni(x)

∂t
+Gi

∂ni(x)

∂x
= −ni(x)

τ
+
βx2

2

∫ x

0

ni((x
3 − λ3)1/3)ni(λ)

(x3 − λ3)2/3
dλ−βni(x)

∫ ∞
0

ni(λ)dλ (S5)

Bi = ki,b

(
C

K
1/2
eq,i

− 1

)bi ∫ ∞
0

x2ni(t, x)dx Gi = ki,g

(
C

K
1/2
eq,i

− 1

)gi
(S6)

i = α, β, ... ni(t = 0, x) = ni,seed ni(t, x = 0) =
Bi

Gi

(S7)
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where ni,seed represents the size distribution of seeds added to the crystallizer as a pulse

at t = 0. The agglomeration kernel used here implies that agglomeration events can only

occur among particles in the same distribution (of the same solid form). Multipolymorph

agglomerates are observed in the SEM images reported in the main text, but one expects

that the physical essence and perhaps the important effects of agglomeration can be captured

and understood by this description. This simplification is discussed in more detail in section

S3. The second governing equation for the model is the solute balance ODE.

dC

dt
=
C0 − C

τ
−
∑
i=α,β

ρiki,gki,v

(
C

K
1/2
eq,i

− 1

)gi ∫ ∞
0

nix
2dx (S8)

C(t = 0) = C0 (S9)

where C0 is the inlet concentration. The method of moments changes some distribution func-

tion, f(t, x), into an infinite set of moments that are explicitly independent of the variable,

x, but that collectively retain much of the information relating the original function to the

eliminated variable (x). The method of moments can be used to eliminate the x dependence

from some distribution function f(t, x) where x ∈ [0,∞) as shown below

m0(t) =

∫ ∞
0

f(t, x)dx (S10)

m1(t) =

∫ ∞
0

x f(t, x)dx (S11)

m2(t) =

∫ ∞
0

x2 f(t, x)dx (S12)

mk(t) =

∫ ∞
0

xk f(t, x)dx (S13)

In the precipitator model, the method of moments was used to transform the partial differ-

ential integral equation (Equation S5) in t and x into an infinite set of ODEs in just t. When
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this procedure is followed, the moments take on physical significance; the zeroth moment

is the total crystal number density, the first is the total particle length density, the second

is related to the total particle surface area density through a shape factor (ki,v), and the

3rd is related to the total crystal volume density through a shape factor. The kth moment

transformation of each term in Equation S5 is given in Equations S14-S20. Note that both

populations (nα and nβ) are generally functions of t and x. In the interest of simplicity of

presentation, the time functionality of the ni(t, x) and mi(t) is implicit throughout much of

this Supplementary Information. The first term in Equation S5 (farthest to the left):

∫ ∞
0

xk
∂ni
∂t

dx =
∂

∂t

∫ ∞
0

xk nidx =
dmi,k

dt
(S14)

The second term requires integration by parts. When k = 0,

Gi

∫ ∞
0

∂ni
∂x

dx = Bi (S15)

and the k 6= 0 case becomes

∫ ∞
0

Gi x
k ∂ni
∂x

dx = Gi

[
xkni(t, x)

∣∣∣∣∞
0

− kmi,k−1

]
= −kGimi,k−1 (S16)

The third term: ∫ ∞
0

−xkni(t, x)

τ
dx = −mi,k

τ
(S17)

For the fourth term, it is helpful to first swap the order of integration

∫ ∞
0

βx2+k

2

∫ x

0

ni((x
3 − λ3)1/3)ni(λ)

(x3 − λ3)2/3
dλdx =

β

2

∫ ∞
0

∫ ∞
λ

x2+k
ni((x

3 − λ3)1/3)ni(λ)

(x3 − λ3)2/3
dxdλ

(S18)

Then, it is helpful to make the change of variables, u3 = (x3 − λ3). (See Ref. 2)2

β

2

∫ ∞
0

∫ ∞
λ

x2+k
ni((x

3 − λ3)1/3)ni(λ)

(x3 − λ3)2/3
dλdx =

β

2

∫ ∞
0

ni(λ)

∫ ∞
0

(u3 + λ3)k/3ni(u)dudλ (S19)
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The fifth term simplifies to

−
∫ ∞
0

xkβni(x)

∫ ∞
0

ni(λ)dλdx = −βmkm0 (S20)

And since the i form nucleation expression can be rewritten in terms of the second moment

of the i distribution,

Bi = ki,b

(
C

K
1/2
eq,i

− 1

)bi
mi,2 (S21)

the infinite set of moment equations describing the populations (ni) can be written succinctly

as Equations S22 and S23 below. For k = 0:

dmi,0

dt
= −mi,0

τ
+ ki,b

(
C

K
1/2
eq,i

− 1

)bi
mi,2 −

β

2
m2
i,0 (S22)

when k 6= 0

dmi,k

dt
= −mi,k

τ
+ kGimi,k−1 +

β

2

∫ ∞
0

ni(λ)

∫ ∞
0

(u3 + λ3)k/3ni(u)dudλ− βmi,kmi,0 (S23)

The only piece of the solute balance ODE affected by the transformation is the last term

(on the far right of Equation S8: 4πρiki,g

(
C

K
1/2
eq,i

− 1

)gi ∫∞
0
nix

2dx). This term represents the

moles of solute deposited from the solution into the solid distribution of polymorph i (ni)

per unit volume per unit time. Crystals grow from the surface, so the total solid crystal

deposition rate is a product of the linear growth rate and the total amount of surface area

that exists in the distribution. The integral term is necessary to determine how much crystal

surface area exists in the distribution. In Equation S8, ki,v is the shape factor that relates

the crystal length coordinate to its surface area and volume. After the method of moments

transformation, the solute balance ODE simplifies to

dC

dt
=
C0 − C

τ
−
∑
i=α,β

ρiki,gki,v

(
C

K
1/2
eq,i

− 1

)gi
mi,2 (S24)
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S3: The agglomeration kernel

A constant agglomeration kernel is assumed throughout this analysis, but it was noted

during both the model introduction and the experimental discussion that agglomeration

kernels have been proposed that depend on crystal size (x) and/or supersaturation (S, or

C/Csat).
3–5 While analyzing the steady-state structure and relative dynamic stability features

as functionals of the agglomeration kernel are outside the scope of this work, we do include

several brief discussion points here.

First and foremost, the model presented here led to insights for designing solid-form

selective precipitators, evidenced by the pure vaterite distributions obtained experimentally.

In general, we prefer to model complex systems with the simplest possible description that

consistently accounts for all of the important physicochemical effects. Furthermore, when

one attempts to experimentally characterize model parameters, such as rate constants or

agglomeration kernels, a simpler description often requires less experimental data to test

and is therefore less prone to parameter estimation errors, making it more useful. If a simple

model fails to re-create observed experiments, one can then move to a more complicated

model.

The agglomeration kernel utilized here also implies that agglomeration only occurs among

crystals of the same solid form. This assumption is unlikely to be exactly true for all sets of

design choices and operation conditions, but this treatment is not expected to limit the util-

ity of the design rules. Only polymorphically pure steady-states are possible in the absence

of agglomeration (See our previous paper6). Therefore, in the limit of low agglomeration

rates, the first agglomeration events must be among crystals of the same solid form, implying

that the kernel used here must be exact in these regions of parameter space. Furthermore,

one expects that the agglomeration kernel remains qualitatively correct near the mixed-

polymorph/pure polymorph bifurcation surfaces (the lines separating regions of pure-form

dynamic stability from regions of mixed-form dynamic stability in Figure 2) because the

polymorphic distribution changes continuously across these transitions. Immediately across
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a bifurcation surface within the mixed-polymorph stability region, the crystal distribution

remains dominated by a single solid form, thus most agglomeration events must be between

crystals of that dominant solid form. These bifurcation surfaces collapse to a single surface

in the limit Ai → 0, further implying that this description becomes more accurate in that

limit. The model retains its utility even if some set of operating conditions generates appre-

ciable fractions of both solid forms and thus enables non-zero inter-form agglomeration rates

because this is not a region of parameter space in which one would prefer to operate. The

model need not quantitatively predict the value of all of the states deep within the region of

mixed-polymorph stability for the design rules produced from it to be useful. The primary

utility of the analysis presented here is the determination of the location of the bifurcation

surfaces in parameter space, and the agglomeration kernel is very accurate near these sur-

faces. These design rules guide process design towards or away from the bifurcation surface

that separate the regions of parameter space that produce preferred and unpreferred solid

form distributions. Therefore, the positions of the bifurcation surfaces are more important

than the relative distribution of the forms deep within the mixed-polymorph region. If the

specific size distribution and solid fraction deep within the mixed-polymorph region is per-

tinent for some application, then one might consider how the model predictions change if a

more detailed agglomeration kernel is utilized.

S4: Discussion of the functional form of the Damköhler

numbers

The Damköhler numbers are defined in Equations 16 and 18 in the main text and re-stated

here in Equations S25 and S26.

Daα = 2τkα,b

(
C0 −K1/2

eq,β

K
1/2
eq,α

)bα
σ2
α > 0 Daβ = 2τkβ,b

(
C0 −K1/2

eq,β

K
1/2
eq,β

)bβ
σ2
β > 0 (S25)
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where σi is the characteristic growth length for form i defined as

σα = τkα,g

(
C0 −K1/2

eq,β

K
1/2
eq,α

)gα
σβ = τkβ,g

(
C0 −K1/2

eq,β

K
1/2
eq,β

)gβ
(S26)

Conventionally, the dimensionless groups that arise from non-dimensionalizing a set of

model equations are presented as ratios of characteristic times or rates. When this convention

is followed, all dimensionless groups have an intuitive meaning that is easy to understand,

and one can often intuit how the model solution might change when the group changes based

on this intuition alone. The presentation of the Damköhler numbers in the text attempts to

follow this convention, but some additional discussion is required to reconcile the convention

with the τ 3 scaling of both Dai.

The nucleation rate expression used here is a secondary rate expression that scales with

the second moment of the crystal size distribution. Therefore, ki,b has units of number/

length2/time, and a characteristic area scale is required to estimate a characteristic nucle-

ation rate with units of number/time. Upon non-dimensionalization, one determines that

the characteristic area that appears in the dimensionless group is σ2
i . The quantity σi con-

tains a product of the growth rate expression prefactor (ki,g; units of length/time) and the

residence time which combine to give a length dimension. This length is the characteristic

growth length for form i during a time period of one residence time τ , therefore σ2
i is a

characteristic crystal surface area. In the context of the convention discussed above, a rea-

sonable way to qualitatively describe the Dai is as a ratio of the characteristic process time

to the characteristic nucleation time, where the characteristic nucleation rate varies as the

characteristic growth length squared (σ2
i ). The Dai are similar to conventional Damköhler

numbers in the context of this intuitive description.
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S5: Non-stoichiometric feed and non-dimensionalization

The experiments reported in this paper took place at relatively high pH conditions. There-

fore, we have assumed that the reactant salts were fully dissociated and that all of the

aqueous carbon was in the carbonate form (CO2−
3 ). In this case, the only relevant aqueous

species are Ca2+ and CO2−
3 , and the chemistry can be summarized as:

Ca2+ + CO2−
3
⇀↽ CaCO3,(s,α) Ca2+ + CO2−

3
⇀↽ CaCO3,(s,β) (S27)

Therefore, there are C−R = 2 independent mole balances. Once the growth and nucleation

rate expressions are defined, the solute balances for component 1 (Ca2+) and component 2

(CO2−
3 ) can be written:

dC1

dt
=
C1,0 − C1

τ
− 4π

∑
i=α,β

ρiki,g

((C1C2

Keq,i

)1/2 − 1

)gi ∫ ∞
0

nix
2dx (S28)

dC2

dt
=
C2,0 − C2

τ
− 4π

∑
i=α,β

ρiki,g

((C1C2

Keq,i

)1/2 − 1

)gi ∫ ∞
0

nix
2dx (S29)

Bi = ki,b

((C1C2

Keq,i

)1/2 − 1

)bi
mi,2 Gi = ki,g

((C1C2

Keq,i

)1/2 − 1

)gi
(S30)

The 1/2 power that appears in the growth and nucleation driving forces was justified in a

previous publication.7 Subtracting Equation S28 from Equation S29 (at steady-state) yields

the mole balance.

C2 = C2,0 + C1 − C1,0 (S31)
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Only one of the solute balances (S28 and S29) is linearly independent of equation S31. Now

define φ = C2,0 − C1,0 to eliminate C2 from Equation S28 to give a single solute balance in

terms of C1, C1,0 and φ.

dC1

dt
=
C1,0 − C1

τ
− 4π

∑
i=α,β

ρiki,g

((C1(C1 + φ)

Keq,i

)1/2 − 1

)gi ∫ ∞
0

nix
2dx (S32)

The model is only meaningful for systems in which the feed is supersaturated, so the lowest

possible value of C1 is the value that gives a saturated solution, given φ. If Keq,β is the

solubility product equilibrium constant of the least soluble form (calcite), then the limiting

value of C1 can be defined as a function of φ as shown in Equation S33.

C1,min =
(φ2 + 4Keq,β)1/2 − φ

2
(S33)

C1,min is essentially the concentration expected to exist in the reactor after an infinite resi-

dence time. Notice that in the limit φ→ 0 (i.e., a stoichiometric feed), C1,min → K
1/2
eq,β (the

expected result). Now that the minimum value of C1 is known, one can non-dimensionalize

C1.

y =
C1 − C1,min

(C1,0(C1,0 + φ))1/2 − C1,min

(S34)

y ∈ [0, 1] when φ = 0. If φ > 0 or < 0, the upper bound for y is lower or higher, re-

spectively. The non-stoichiometric non-dimensionalization generates four new dimensionless

groups within the solute balance ODE:

y0 =
C1,0 − C1,min

(C1,0(C1,0 + φ))1/2 − C1,min

(S35)

Γ =
K

1/2
eq,β

(C1,0(C1,0 + φ))1/2 − C1,min

(S36)
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γ =
K

1/2
eq,β −K

1/2
eq,α

(C1,0(C1,0 + φ))1/2 − C1,min

(S37)

Z =
(φ2 + 4Keq,β)1/2

(C1,0(C1,0 + φ))1/2 − C1,min

= Γ
(φ2 + 4Keq,β)1/2

K
1/2
eq,β

(S38)

dy

dξ
= y0 − y − ωβ,2

[
(y2 + Zy + Γ2)1/2 − Γ

]gβ − ωα,2[(y2 + Zy + Γ2)1/2 − Γ + γ
]gα

(S39)

With these definitions, the dimensionless states of both the moment equations and the solute

balance can be defined as shown below

ξ =
t

τ
> 0 y =

C1 − C1,min

(C1,0(C1,0 + φ))1/2 − C1,min

(S40)

σα = τkα,g

(
1

Γ− γ

)gα
σβ = τkβ,g

(
1

Γ

)gβ
(S41)

ωα,0 = 8πσ3
αmα,0

ρα

C0 −K1/2
eq,β

ωβ,0 = 8πσ3
βmβ,0

ρβ

C0 −K1/2
eq,β

(S42)

ωα,1 = 8πσ2
αmα,1

ρα

C0 −K1/2
eq,β

ωβ,1 = 8πσ2
βmβ,1

ρβ

C0 −K1/2
eq,β

(S43)

ωα,2 = 4πσαmα,2
ρα

C0 −K1/2
eq,β

ωβ,2 = 4πσβmβ,2
ρβ

C0 −K1/2
eq,β

(S44)

In the limit φ → 0 (i.e., a stoichiometric feed), the following simplifications occur. y0 → 1,

Z → 2Γ, and C1,min → K
1/2
eq,β. After these simplifications, Equation S39 becomes

dy

dξ
= 1− y − ωβ,2ygβ − ωα,2(y + γ)gα (S45)

Equation S45 is equivalent to Equation 25 in the main text of the article.
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When φ→ 0, the dimensionless state definitions become:

ξ =
t

τ
> 0 y =

C1 −K1/2
eq,β

C0 −K1/2
eq,β

(S46)

σα = τkα,g

(
C0 −K1/2

eq,β

K
1/2
eq,α

)gα
σβ = τkβ,g

(
C0 −K1/2

eq,β

K
1/2
eq,β

)gβ
(S47)

ωα,0 = 8πσ3
αmα,0

ρα

C0 −K1/2
eq,β

ωβ,0 = 8πσ3
βmβ,0

ρβ

C0 −K1/2
eq,β

(S48)

ωα,1 = 8πσ2
αmα,1

ρα

C0 −K1/2
eq,β

ωβ,1 = 8πσ2
βmβ,1

ρβ

C0 −K1/2
eq,β

(S49)

ωα,2 = 4πσαmα,2
ρα

C0 −K1/2
eq,β

ωβ,2 = 4πσβmβ,2
ρβ

C0 −K1/2
eq,β

(S50)

All of the experiments reported here were performed with a stoichiometric feed and at high

enough pH such that Equation S27 is representative of the chemistry. In this case, C1

becomes C, y ∈ [0, 1] and Equation S45 is the only necessary solute balance ODE.

The quantity Keq,β appears in the definitions of σα and Daα because the solute concen-

tration is non-dimensionalized with respect to Keq,β (See Equation S46). The driving force

for form i nucleation is (
C

K
1/2
eq,i

− 1

)bi

(S51)

From Equation S46, the dimensional concentration is equivalently given as

C = y
(
C0 −K1/2

eq,β

)
+K

1/2
eq,β (S52)

Therefore, the driving force for form i nucleation can also be written as

(
y
(
C0 −K1/2

eq,β

)
+K

1/2
eq,β

K
1/2
eq,i

− 1

)bi

(S53)
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which can be re-written again as

(
y
(
C0 −K1/2

eq,β

)
K

1/2
eq,i

+
K

1/2
eq,β

K
1/2
eq,i

−
K

1/2
eq,i

K
1/2
eq,i

)bi

(S54)

Or (
C0 −K1/2

eq,β

K
1/2
eq,i

)bi(
y +

K
1/2
eq,β −K

1/2
eq,i

C0 −K1/2
eq,β

)bi

(S55)

When i = β, this expression simplifies to

(
C0 −K1/2

eq,β

K
1/2
eq,β

)bi

ybi (S56)

When i = α, it changes to

(
C0 −K1/2

eq,β

K
1/2
eq,α

)bi(
y +

K
1/2
eq,β −K

1/2
eq,α

C0 −K1/2
eq,β

)bi

=

(
C0 −K1/2

eq,β

K
1/2
eq,α

)bi

(y + γ)bi (S57)

The driving force for α form nucleation depends on Keq,β when written in terms of the di-

mensionless concentration, y. Therefore, Keq,β appears in the definition of Daα. The same

arguments apply to the driving force for α form growth. Therefore, the α form character-

istic growth length, σα, also depends on Keq,β when written in terms of the dimensionless

concentration, y.

S6: Crystal drying procedure

The data in Table S1 support the claim that polymorph transition does not occur during the

drying procedure described in the experimental section. The table reports how the percent

polymorph (by mass) of three different samples changed as a function of drying procedure.

Each sample was measured without drying, after drying for 1 hour at 70 °C, and after drying

for 72 hours at 70 °C. The phase fractions were the same for all drying procedures (within
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experimental error). In all subsequent experiments, solids were dried for 24 hours at 70 °C

before measuring the phase fractions with XRD. A similar procedure was followed in several

published articles.8,9

Table S1: Each sample was collected from experiments performed at T = 25°C with τ = 6
minutes. Samples 1, 2 and 3 were performed with C0 = 0.0125, 0.05, and 0.15 moles/liter,
respectively. The samples were taken during startup dynamics to ensure that the initial
distribution would contain both vaterite and calcite. The percent polymorph (mass) did not
change when the drying procedure was varied.

Sample

1

moist

dried 72 hr

dried 1 hr

73

73

73 27

27

27

preparation % calcite % vaterite % aragonite

0

0

0

2

moist

dried 72 hr

dried 1 hr

70

70

70 30

30

30 0

<1

<1

3

moist

dried 72 hr

dried 1 hr

64

64

64 35

35

36 0

<1

<1

S7: Reproducibility

We duplicated one set of experimental conditions to confirm that our experimental procedure

was reproducible. The repeated experiment was performed with a residence time of τ = 12

minutes, a temperature of T = 25 °C, and an inlet concentration of 0.0125 molar. As in all

of the experiments, there is some noise (≈ 3%) in the phase fitting results, but the average

of the readings can be compared. The data in Table S2 illustrate that the experiment is

reproducible within the error of the phase fitting. The average phase fraction measured at

steady state in sample 1 and sample 2 was 95 and 94 wt. %, respectively. We therefore

declare this experiment reproducible.

S14



Table S2: Percent polymorph was characterized with powder XRD phase fitting at 30 minute
intervals. The experiments described here were performed at T = 25°C, τ = 12 minutes,
and C0 = 0.0125 molar. The table reports the maximum, minimum, and average polymorph
% calculated from the powder XRD patterns taken after the process reached steady-state.
The noise in the measurement is evident in the spread between the maximum and minimum
values that were observed. The experimental observation was reproducible within the error
of the measurement (≈ ±3%).

Sample

1

2

95

96

93

93 95

94

max % min % mean %

S8: Additional NMR spectra and XRD patterns

Throughout this paper, the primary technique used to quantify phase fractions was Rietveld

phase fitting of powder XRD patterns. This method is quick and accurate whenever the

phase domains are large enough to reflect Xrays. Figures S1 and S2 were acquired on the

steady-state effluent crystals from the experiments described in Figures 5a and 5b in the

main text of this publication. Rietveld phase fitting of the pattern in Figure S1 and S2

indicate that the solids are 75 % and 93 % vaterite, respectively. Complementary 43Ca

15 25 35 45 55

2  (˚)  

c

c

c

c

c

c c
c

v

v

v

v

v v

v

Figure S1: Powder X-ray diffraction pattern collected on solids removed from the steady-
state precipitation experiment described in Figure 5a of the main text of this publication.
The experiment was performed at T = 25 °C, τ= 6 min, and C0=0.0125 M. Rietveld phase
fitting indicates that the solids are 75 % vaterite and 25 % calcite.

NMR spectra were acquired on two select samples to determine the local 43Ca environments

associated with the different CaCO3 phases. 43Ca is difficult to characterize with NMR due
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Figure S2: Powder X-ray diffraction pattern collected on solids removed from the steady-
state precipitation experiment described in Figure 5b of the main text of this publication.
The experiment was performed at T = 25 °C, τ= 9 min, and C0=0.0125 M. Rietveld phase
fitting indicates that the solids are 93 % vaterite and 7 % calcite.

to its low gyromagnetic ratio (-1.803 × 107 rad T−1 s−1), low natural isotopic abundance

( ≈ 0.135 %), and the general difficulties associated with quadrupolar nuclei (7/2 spin).

These challenges were overcome with the high magnetic fields (19.6 T) possible at the U.S.

National High Magnetic Field Laboratory in Tallahassee, Florida. The spectrum in Figure

S3 was acquired on a solid sample known to contain aragonite, calcite, and vaterite. This

sample was chosen to confirm that each solid form displays unique, resolvable chemical shifts

under our experimental conditions. A second spectrum (Figure 8b) was acquired on a sample

produced in our precipitator for which XRD indicated that the sample was predominantly

vaterite (< 1% calcite). The single peak centered around 3 ppm in Figure 8b indicates that

the only form present within the detection of the measurement is vaterite. This corroborates

the powder XRD data, and the SEM images presented in the main text (Figure 8a, c, d).

Therefore, vaterite is the only detectable solid form in the sample obtained at a residence

time of 6 minutes, an inlet concentration of 0.15 molar, and a temperature of 25 °C.

The centers of the NMR peaks associated with calcite, vaterite, and aragonite are sen-

sitive to the molar concentration of the aqueous CaCl2 used to reference the spectrum, but

the broad vaterite peak is found between the calcite and aragonite peaks for all reference
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Figure S3: Solid-state, single pulse 43Ca NMR spectrum acquired from a solid sample known
to contain vaterite, aragonite, and calcite (from XRD phase fitting). The NMR spectrum was
acquired at 19.6 T, 25 °C, and 5 kHz MAS with a 0.5 s delay time. The peaks at 20, 3 and
-27 ppm can be assigned to calcite, vaterite, and aragonite, respectively. This measurement
confirms that all three solid forms have resolvable chemical shifts at these conditions.

S9: Additional discussion of model analysis

When the stability transitions are projected onto the 2-dimensional Φα vs. Φβ plane as in

Figure 3 (main text of this article), the location of the mixed-polymorph/pure-polymorph

bifurcation lines are strong functions of the Agglomeration numbers and weak functions of

all of the other parameters. The two stability transition boundaries that mark the dynamic

stability transition from a pure α or a pure β steady-state to a mixed-polymorph steady-

state move away from the Φα = Φβ line as the Agglomeration numbers increase from zero.

In the main text of the article, Acritα was identified as the lowest value of Aα for which the

mixed-polymorph steady-state is possible at a fixed value of the other 8 parameters such that

Φα > Φβ. Our numerical results consistently show that this critical agglomeration number

occurs when the steady-state solute concentration at the pure α steady-state is exactly equal

to the steady-state concentration at the pure β steady-state in the limit of Aβ → 0. The

mixed-polymorph steady-state also becomes linearly stable when Aα > Acritα .
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A similar critical agglomeration number (Acritβ ) exists when Φβ > Φα. Qualitatively, this

pure β/mixed-polymorph bifurcation surface similarly corresponds to all of the parameter

combinations at which the solute concentration (y) is the same at both the pure β steady-

state (Aβ 6= 0) and the pure α steady-state when Aα = 0 (i.e., yβ,Aβ 6=0 = f(Daβ, gβ, bβ, Aβ) =

yα,Aα=0 = g(Daα, gα, bα, γ)). Analogously, the mixed-polymorph steady-state is linearly

stable when Aβ > Acritβ .

Therefore, the position of each bifurcation surface projection in the Φα vs Φβ plane that

separates a region of pure polymorph dynamic stability from a region of mixed-polymorph

dynamic stability depends on only one of the Agglomeration numbers. When Φα > Φβ, the

important Agglomeration number for relative dynamic stability is Aα. Alternatively, when

Φα < Φβ, the important Agglomeration number for relative dynamic stability is Aβ. Each of

the stability diagrams in this article were calculated with Aβ = Aα. The same information

could have been presented with Ai = 0, Aj 6= 0, and twice as many figures. In other words,

each Agglomeration number only affects the stability relationships for 1/2 of the stability

diagram (Φi=q > Φi6=q). Each stability diagram presented at fixed Aα = Aβ is technically a

projection of the four dimensional stability space defined by [Φα,Φβ, Aα, Aβ] onto the two di-

mensional plane defined by [Φα,Φβ, Aα = Aβ = A] (where A is some constant). Based on all

of our calculations, we believe that no information is lost when the results are presented and

discussed in terms of a three dimensional stability space defined by [Φα,Φβ, Aα = Aβ]. There-

fore, we presented and discussed all stability diagrams as two dimensional slices/projections

of the three dimensional stability space defined by [Φα,Φβ, Aα = Aβ = A]

Figures S4-S6 demonstrate that the projections of the bifurcation surfaces onto the Φα

and Φβ plane are relatively insensitive to physically reasonable changes in the remaining

parameters (gα, bα, gβ, bβ, and γ). In each figure, all but one parameter that affects each

bifurcation surface is held constant at the “base case” values defined in Figure 3b of the

main text of this paper (gi = 1.5, bi = 2.5, γ = −0.0042, and Ai = 0.1). Then, the

mixed-polymorph stability boundary is projected onto the Φα, Φβ plane for several different
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physically reasonable values of the last parameter. The figure then illustrates how changing

that parameter affects the position of the mixed-polymorph stability boundary.

In Figure S4, the mixed polymorph stability boundary is shown for gα and gβ = 1, 1.5,

and 2. Variation in both gα and gβ is presented on the same figure because each parameter

only affects the boundary on one side of the Φα = Φβ line. Increasing the growth exponent

while holding all of the other parameters constant grows the mixed-polymorph stability

region, but has very little effect on the overall shape of the boundary.

0 1 2

1

2

0

g
i
=1.0
g
i
=1.5
g
i
=2.0

Figure S4: The outermost (green), middle (red), and inner (orange) curves are the mixed-
polymorph/pure-polymorph stability transition boundaries when gi = 2, 1.5, and 1, respec-
tively. These curves were all calculated with the other 8 dimensionless model parameters
fixed at the values associated with Figure 3b in the main text of the article (bα = bβ = 2.5,
γ = −0.0042, and Aα = Aβ = 0.1)). The mixed-polymorph stability region is larger when
the growth exponent is higher, but changing the growth exponent does not change the qual-
itative shape of the curve.

In Figure S5 the mixed-polymorph stability boundary is shown for bα and bβ = 1.5, 2.5,

and 3.5. Variation of the bifurcation surface projection’s position in the Φα vs Φβ plane with

respect to both bα and bβ is presented on the same figure because each bi only affects the

boundary on one side of the Φα = Φβ line. The bifurcation surfaces are relatively insensitive

to changes in bi, but the total mixed-polymorph stability region does shrink as the bi are

increased.
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Figure S5: The outermost (orange), middle (red), and inner (green) curves are the mixed-
polymorph/pure-polymorph stability transition boundaries when bi = 1.5, 2.5, and 3.5, re-
spectively. These curves were all calculated with the other 8 dimensionless model parameters
fixed at the values associated with Figure 3b in the main text of the article (gα = gβ = 1.5,
γ = −0.0042, and Aα = Aβ = 0.1)). The bifurcation surfaces are relatively insensitive
to changes in bi, but the total mixed-polymorph stability region does shrink as the bi are
increased.

In Figure S6 the mixed-polymorph stability boundary is shown for γ = −0.0042, -0.1,

and -0.2. The solubility parameter (γ) exhibits no effect on the mixed-polymorph stability

bifurcation surface above the Φα = Φβ line, but it has a substantial effect on the surface below

this line. γ quantifies the difference in solubility between the two forms relative to the inlet

supersaturation of the most stable form. When it is close to zero (such as in the experiments

reported here in which γ ≈ −0.0042), the mixed polymorph bifurcation surfaces are almost

symmetric around the Φα = Φβ line. As γ approaches -1, the mixed polymorph-stability

region grows below the Φα = Φβ line, introducing considerable asymmetry.

S10: Vaterite stability data

Table S3 shows how the solid form of three different samples changed during storage. Each

data point was determined by phase fitting of a powder X-Ray diffraction pattern. Samples
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Figure S6: The outermost (green), middle (orange), and inner (red) curves are the mixed-
polymorph/pure-polymorph stability transition boundaries when γ = −0.2, -0.1, and -
0.0042, respectively. These curves were all calculated with the other 8 dimensionless model
parameters fixed at the values associated with Figure 3b in the main text of the article
(gα = gβ = 1.5, bα = bβ = 2.5, and Aα = Aβ = 0.1)). The position of the mixed-
polymorph/pure polymorph stability transition surface projection onto the Φα vs Φβ plane
above the Φα = Φβ line is not a function of γ. This is intuitively consistent because γ
only affects the metastable form driving forces in the model. The position of the mixed-
polymorph/pure polymorph stability transition surface projection onto the Φα vs Φβ plane
below the Φα = Φβ line shows a relatively strong dependence on γ.
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were filtered and dried as previously discussed. Crystals were then stored in a sealed vial

for the time listed in the table. Dry vaterite prepared in this way is stable for at least 450

days.

Table S3: Three separate samples were monitored that initially contained >98% vaterite
(based on X-Ray diffraction phase fitting). Changes in polymorph % that have been observed
thus far are smaller than the error of the phase fitting procedure. Dry vaterite can be stable
for at least 450 days without any additional additives or treatments.

S11: Estimating the nucleation rate expression pre-factor

In our earlier paper, we made comparisons to experimental results reported in two papers

by Lai et al.8,11 These papers reported secondary nucleation kinetics of the form:

Bi = k
i,b,M

2/3
T

(
C

Csat,i
− 1

)bi

M
2/3
T = k

i,b,M
2/3
T

(
C

Csat,i
− 1

)bi

(ρimi,3)
2/3 (S58)

where Bi has units of number/length3/time, MT is the magma density in units of mass of

solids per suspension volume, and ρi is the mass density of solute with units of mass of solids

per solid volume. The analysis in this paper and in our previous paper6 assumed that the
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nucleation rate scaled with the second moment of the distribution, mi,2.
1

Bi = ki,b,m2

(
C

Csat,i
− 1

)bi

mi,2 (S59)

For comparisons of our theory to the available experiments, we assumed that m2 ≈ m
2/3
3

such that the correct nucleation rate expression pre-factor adjustment was just ρ
2/3
i . In other

words, we assumed that the nucleation rates predicted by our model would be approximately

the same as the rates predicted by the rate model in Lai et al. once we redefined the

nucleation rate pre-factor for our model (ki,b,m2) as the following function of the nucleation

rate pre-factor in Lai et al.8

ki,b,m2 = k
i,b,M

2/3
T
ρ
2/3
i (S60)

Since the units of the magma density used to regress k
i,b,M

2/3
T

were not specifically stated

in Lai et al., we selected the units that gave the best agreement between calculated (using

Equation S59) and experimental steady-state solution concentration (kg/L). This led to all of

our assumed nucleation rate pre-factors (ki,b,m2) being 1.542/3 times as large as the pre-factors

reported in Lai et al. (k
i,b,M

2/3
T

).8

In this section, we offer another, higher fidelity conversion that does not require the

assumption m2 ≈ m
2/3
3 . The simpler conversion (Equation S60) was used in Figure 9 in the

main text of this manuscript for consistency, but both Figure 2 from our 2016 paper and

Figure 9 from this paper have also been re-constructed under the higher fidelity conversion

presented next. These figures are included at the end of Section S11, and they illustrate

that both conversion approaches lead to solid form predictions that are consistent with the

reported experimental data.

1We prefer Expression S59 because it allows the moment transformation to close 1 order lower (k = 2
instead of k = 3), and we expected that both expressions should exhibit similar predictive utility.
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Higher fidelity transformation

In this section, we describe a higher fidelity nucleation rate expression conversion approach

(relative to Equation S60) that is based on a more realistic description of the relationship

between ki,b,m2 and k
i,b,M

2/3
T

. Therefore, it should better reproduce the reported experimental

data and enable more effective generalizations to other experimental conditions.

MSMPR crystallizers dominated by nucleation and growth (with negligible agglomera-

tion) exhibit the following steady-state crystal size distribution

ni(x) = ni(0)e−x/(Giτ) (S61)

Therefore, the steady-state moments are

mi,2 = 2ni(0)(Giτ)3 (S62)

mi,3 = 6ni(0)(Giτ)4 (S63)

(S64)

and M
2/3
T is

M
2/3
T =

(
6ρini(0)(Giτ)4)2/3 (S65)

Gi is monotonically increasing in the steady-state supersaturation, and the steady-state su-

persaturation monotonically decreases with increases in τ . Therefore, for a specific crystal

system at a specific feed concentration and temperature, Giτ should be relatively constant.

One can estimate a constant correction factor that converts from a nucleation rate propor-

tional to M
2/3
T to a rate proportional to m2 by setting the two nucleation rate expressions
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equal to each other and solving for the ratio ki,b,m2/ki,b,M2/3
T

.2

k
i,b,M

2/3
T

(
C

Csat,i
− 1

)bi(
6ρini(0)(Giτ)4)2/3 =ki,b,m2

(
C

Csat,i
− 1

)bi
2ni(0)(Giτ)3 (S66)

ki,b,m2/ki,b,M2/3
T

=
(
6ρini(0)(Giτ)4)2/3/

(
2ni(0)(Giτ)3

)
(S67)

ki,b,m2/ki,b,M2/3
T

=

(
9ρ2i

2ni(0)Giτ

)1/3

(S68)

The quantity ni(0) is estimated from the nucleation and growth rate expressions and the

steady-state concentrations reported in Lai et al.

ni(0) =Bi/Gi = k
i,b,M

2/3
T

(C/Csat,i − 1)biM
2/3
T /Gi (S69)

ni(0) =Bi/Gi = k
i,b,M

2/3
T

(C/Csat,i − 1)biρ
2/3
i

(
6ni(0)(Giτ)4)2/3/Gi (S70)

[ni(0)]1/3 =k
i,b,M

2/3
T

(C/Csat,i − 1)biρ
2/3
i

(
6(Giτ)4)2/3/Gi (S71)

ni(0) =
(k
i,b,M

2/3
T

(C/Csat,i − 1)bi)3
(
ρi6(Giτ)4)2

G3
i

(S72)

Expression S68 and S72 combine to give

ki,b,m2/ki,b,M2/3
T

=

(
9ρ2i

2[ni(0)]Giτ

)1/3
Gi

(k
i,b,M

2/3
T

(C/Csat,i − 1)bi)
(
ρi6(Giτ)4)2/3

(S73)

Collecting like terms

ki,b,m2/ki,b,M2/3
T

=
1

2k
i,b,M

2/3
T
G2
i (C/Csat,i − 1)biτ 3

(S74)

The steady-state concentrations and growth kinetics are reported for each of the 6 experi-

ments in Lai et al.8 This information can be combined with Equation S74 to determine a

higher fidelity estimate for the conversion factor from one nucleation rate expression to the

other. In fact, this transformation guarantees that the nucleation rates will be exactly the

2ki,b,m2/ki,b,M2/3
T

is also called the “adjustment factor” throughout this section.

S25



same for both expressions exactly at the operating point in question. Unfortunately, we can

only do this adjustment for a solid-form that is observed at steady-state (and presumably

maintains a crystal size distribution defined by Equations S61 and S69). Still, one expects

that the correct factor for some set of conditions should be approximately correct for some

similar set of conditions (i.e., where that solid form is not observed), so calculating an average

factor for the available data and extrapolating to other conditions seems reasonable.

These higher fidelity conversion factors have been calculated and reported in Table S4 for

each of the 6 experiments in Lai et al. (where “adjustment factor” refers to ki,b,m2/ki,b,M2/3
T

).

The first four apply to the α polymorph of L-glutamic acid, and the last two apply to the

β polymorph of L-glutamic acid. The average “adjustment factor” for the four pure α form

Table S4: Higher fidelity adjustment factors (i.e., ki,b,m2/ki,b,M2/3
T

) calculated from Equation

S74 for the 6 experiments reported in Lai et al.8 Figures S7 and S8 were generated by
assuming the average adjustment factor of Experiments 1-4 (11.32) for kα,b,m2 and the average
adjustment factor of Experiments 5 and 6 (0.80) for kβ,b,m2 .

Exp #
“adjustment 

factor”

1 9.38

2 10.90

3 12.09

4 13.05

5 0.36

6 1.24

form

steady-states is 11.32, and the average “adjustment factor” for the two pure β form steady-

states is 0.80. The α “adjustment factor” is larger and the β factor is smaller than our

previous estimates, so all data points move down and to the right in Figure 2 of our previous

paper6 and in Figure 9 in this manuscript. The theory correctly predicts the solid form

reported in the experiments when the nucleation rate pre-factor is estimated with either

method. Furthermore, it also predicts the steady-state solution concentrations reported in
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Lai et al. with high accuracy.

Figure S7: An illustration of how Figure 9 from the main text of this paper changes if one
changes the nucleation rate conversion approach as described in this section (Equations S60
and S74). The points that are lower and to the right are for the higher fidelity conversion
described in this section (Equation S74). The points move down and to the right because the
higher fidelity conversion factor was lower for the β form (0.80 < 1.542/3) and higher for the
α form (11.32 > 1.542/3). The black, green, blue, and red points correspond to experiments
1, 2 3, and 4, respectively.8
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Figure S8: An illustration of how Figure 2 from the our 2016 paper6 changes if one changes
the nucleation rate conversion approach as described in this section. Here, the blue points
represent the conversion by Equation S60 and the red points correspond to the conversion
by Equation S74. The points that are lower and to the right are for the higher fidelity
conversion (Equation S74) described in this section. The points move down and to the right
because the higher fidelity conversion factor was lower for the β form (0.80 < 1.542/3) and
higher for the α form (11.32 > 1.542/3).
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